Problem Solving (25 marks)

Name.

1. Consider the following equilibrium:

 $2 \text{ H}_2\text{O}_{(g)} <===> 2 \text{ H}_{2(g)} + \text{O}_{2(g)}$

Identify two ways to increase the rate of the forward reaction: (2 marks)

n Add a catalyst

11) VP or TV

T [H20] OR

2. Identify four characteristics of a chemical equilibrium. (2 marks)

- i) closed system
 - in constant
 - iii) constant Temp
 - iv) Constant

fund = rev rxn rate

3. Consider the following equilibrium:

 $CS_{2(g)} + 3 Cl_{2(g)} <==> CCl_{4(g)} + S_2Cl_{2(g)} \Delta H = -238 \text{ kJ}$

a. Sketch a potential energy diagram for the reaction above and label ΔH . (2 marks)

Progress of the reaction

b. Some CS₂ is added and equilibrium is then reestablished. State the direction of the equilibrium shift and the resulting change in [Cl₂]. (1 mark)

- shift right - V[Clz]

c. The temperature is decreased and equilibrium is then reestablished. What will the effect be on the value of Keq? (1 mark)

Kee 1

4.	Consider the following equilibrium: $2 \ NO(g) + Cl_2(g) <==> 2 \ NOCl_g) \qquad \Delta H = -77 \ kJ$ What happens to the amount of Cl ₂ when the following changes are imposed Explain using Le Chatlier's principle. a. Removing $NO(g)$ (1 mark)
	b. Decreasing the temperature (1 mark) \(\sum{(1 mark)} \) \(\sum{(2)} \) \(\sum{(x)} \) \
5.	Consider the following equilibrium: $CO_{(g)} + 2 H_{2(g)} <==> CH_3OH_{(g)}$ Explain, using Le Chatlier's principle, how the following changes will affect the number of moles of CH_3OH present at equilibrium. a. Adding a catalyst. (1 mark)
	b. Decreasing the volume of the system (1 mark) Shift cight T [CH50H]
6.	Consider the following equilibrium: $H_{2(g)} + S_{(s)} < = => H_2S_{(g)} \qquad \text{Keq} = 6.8 \times 10^{-2}$ A 1.0 L container is initially filled with 0.050 mol H ₂ and 0.050 mol S. The container is heated to 90°C and equilibrium is established. What is the equilibrium [H ₂ S]? (3 marks) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	0.0034-6.8x10°- × .0034 = 1.06°E/ .0.0031°E/ .5 [4.5] = 0.0000 M C

7.	Consider the following equilibrium: $H_{2(g)} + I_{2(g)} <===$	> 2 HI _(g) Keq = 64	
	Equal moles of H ₂ and I ₂ are placed in a l	.00 L container. At equilibrium,	the [HI] =
	0.160 mol/L. Calculate the initial [H2]. (3 marks)	
		0	
	(1) C [-08]-,08	.16O	
	(1) C0808 E x-,08 x-,08	1.160	
Marine Control	1 -12		
	Kon = LHIJ		
1	7010		
	1102		NOM
	04 = (0160)	\ m - \ -	1000M
	Tx - 03)	1 1200	
	a 110		
	8 = 100		
	X-200		
(S	14=160		
	2 3 2 1		
8.	At high temperature, 0.500 mol HBr was	placed in a 1.00 L container whe	ere it
0.	decomposed to give the equilibrium:		
	$2 \text{ HBr}_{\text{Gl}} <===>$ At equilibrium, the [Br2] is 0.0855 mol/L	. What is the value of the equilit	orium
		0101	
	constant? (3 marks)		
	1 (-171)	DRA 0855	
	C 200	000	. •
	E 329	1.0000 1.0000.	
	Kog = [HD[Boy]		
William Control	Keg = LADLOOZ		
	[HB-7]2		
	[HUY]		
	~ (0.2855)		
	122972		
	(.329)2		
	Log 0.0073)	0.0675	
	X 00 0000		1
	J. J. 108241		
	>		

9. Consider the following:

 $H_{2(g)} + F_{2(g)} <==> 2 HF_{(g)}$ Keq = 1.00 x 10²

A 1.00 L flask is initially filled with 2.00 mol H_2 and 2.00 mol F_2 . Calculate the $[H_2]$ at

equilibrium. (4 marks)

$$\begin{array}{c|cccc}
\hline
I & 2 & 2 & 0 \\
C & -x & -x & 2x \\
\hline
E & 2-x & 2-x & 2n
\end{array}$$

Kog = [HE]2 [HJ] (Fz.

 $(2x)^{2}$ $(2x)^{2}$ $(2-x)^{2}$

10 = 2x 2-x

20 - 10x = 2x 20 = 12x

[HZ] = 2-x = 2-1.67 [HZ] = .338M

Chemistry 12 **Equilibrium**

version 1

Name:	
Block:	

Review

25.

26.

27.

Part 1: Multiple Choice

Outcome 1 Outcome 2

1. D 5. B

2. A 6. D

3. <u>b</u> 7. <u>D</u>

4. <u>A</u> 8. <u>D</u>

Outcome 3

9. 6

10. A

11. <u>H</u>

12.

13.<u>B</u>

14.____

15. <u>U</u>

16.<u></u>

Outcome 4

17. <u>D</u>

18. <u>B</u>

19.____

20._____

21._____

22. <u>A</u>

24.