## Acid/Base Practice Test1 (Multiple Choice)

| $1 a$ | $2 c$ | $3 b$ | $4 a$ | $5 b$ | $6 b$ | $7 c$ | $8 c$ | $9 c$ | $10 a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $11 b$ | $12 b$ | $13 a$ | $14 d$ | $15 a$ | $16 a$ | $17 a$ | $18 d$ | $19 c$ | $20 b$ |
| $21 b$ | $22 d$ | $23 b$ | $24 b$ | $25 d$ | $26 c$ | $27 d$ | $28 d$ | $29 c$ | $30 b$ |
| $31 c$ | $32 a$ | $33 c$ | $34 d$ | $35 c$ | $36 b$ | $37 c$ | $38 d$ | $39 b$ | $40 d$ |

(Written Test)

1. (BAAD) - A strong Bronsted Lowry acid fully dissociates and donates all protons.
2. $\mathrm{pH}=12.21$ ( Kb Ice box Q )
3. $\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}\right]$
$\left[\begin{array}{lll}\mathrm{HC}_{3} & \mathrm{H}_{5} & \mathrm{O}_{3}\end{array}\right]$
4. $\mathrm{Ka}=1.4 \times 10^{-4}$
5. a) Any non-metal oxide, eg. $\mathrm{SO}_{2}$
b) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}----------->\mathrm{H}_{2} \mathrm{SO}_{3}$
6. a) $\mathrm{HSO}_{3}-\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$----------------->> $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{C}_{2} \mathrm{O}_{4}$ -

Base Acid
$\mathrm{Ka}=1.0 \times 10^{-7} \mathrm{Ka}=6.4 \times 10^{-5}$
$\mathrm{HC}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}-------------->\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{-}$
b) $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$ is a stronger acid than $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$, so it can donate protons more readily.
7.
a) $\begin{array}{r}\mathrm{H}_{3} \mathrm{PO}_{4} \\ \text { Weak Acid }\end{array}$
$+\quad \begin{aligned} & \mathrm{H}_{2} \mathrm{O} \\ & \text { Base }\end{aligned}$
$-------------------->\underset{~ C o n j u g a t e ~ B a s e ~}{\text { He }}$
$\mathrm{H}_{3} \mathrm{O}^{+}$
Acid
b) The pH of the solution does not change much because the KOH is added to a buffer solution. The addition of $\mathrm{OH}^{-}$reacts with the $\mathrm{H}_{3} \mathrm{O}^{+}$, but there is only a slight change in the $\mathrm{H}_{3} \mathrm{O}^{+}$because there is a relatively large $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$ which gets used up to form and maintain the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. If the $\mathrm{H}_{3} \mathrm{O}^{+}$only gets lowered slightly, the pH will not change significantly with the addition of 10.0 mL of KOH . The pH will only get raised up by a slight amount.
8. a) $\mathrm{NaNO}_{2}$
b) The Acidity decreases because the reaction shifts left as $\mathrm{NO}_{2}^{-}$reacts with $\mathrm{H}_{3} \mathrm{O}^{+}$.
c) $\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad---------------->\mathrm{NO}_{2}^{-}+\quad \mathrm{H}_{3} \mathrm{O}^{+}$
9. $\mathrm{pH}=1 . \underline{10} \quad\left(.00 \underline{20} \mathrm{~mol}\right.$ excess $\mathrm{HNO}_{3},{ }^{*}$ WATCH YOUR SIG FIGS!)

